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Abstract—Injection-locked regenerative frequency dividers can
achieve a fractional division ratio similar to regenerative frequency
dividers and can provide quadrature output phases. An analysis
of the steady-state operation, stability, and phase noise of injec-
tion-locked regenerative frequency dividers is presented. In addi-
tion, two-stage ring oscillators (based on negative-resistance delay
cells) are studied, and their steady-state free-running operation
and injection-locked behavior are investigated. Simulation results
based on the equations derived in this paper are compared with
circuit simulations to examine the accuracy of our analysis, which
is quantified in different parts of this paper.

Index Terms—Fractional frequency divider, inductorless de-
sign methodology, injection-locked frequency divider (ILFD),
injection-locking, locking range, polyphase filter, regenerative
frequency divider, ring oscillator, self-resonance frequency (SRF),
single-sideband (SSB) mixer .

I. INTRODUCTION

F REQUENCY DIVIDERS are one of the most important
components of any frequency synthesizer. In some applica-

tions, fractional division ratios are required [1]–[3]. In addition,
50% duty-cycle quadrature output phases will allow the use of
single-sideband (SSB) frequency conversion. It is challenging
to implement a high-frequency fractional 50% duty-cycle and
quadrature output frequency divider in a digital CMOS tech-
nology with small die area and low power consumption.

We begin this paper with a general overview of fractional-
frequency-divider architectures in Section II. Injection-locked
regenerative frequency dividers are introduced in Section III.
Their stability is analyzed in Section IV. Two-stage ring oscilla-
tors are good candidates for quadrature output injection-locked
regenerative frequency dividers. Their steady-state operation,
stability, and injection-locked behavior (based on negative-re-
sistance delay cells) are studied in Section V. A phase-noise
analysis of the injection-locked regenerative frequency dividers
is performed in Section VI. Section VII contains a design ex-
ample of injection-locked regenerative dividers to implement
a divider with fractional division ratio and quadrature output
phases. Section VIII summarizes and concludes this paper.

II. FRACTIONAL FREQUENCY DIVIDERS

Fractional frequency dividers are often implemented with
multimodulus frequency dividers and are used in fractional-
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frequency synthesizers to implement a fractional division ratio
[4]. In this technique, interpolating between two or more integer
division ratios provides a division ratio that, on average, repre-
sents a fractional number [4]. Unfortunately, the output wave-
form achieved with this technique does not exhibit a 50% duty
cycle when interpolating between different moduli of the fre-
quency divider. Consequently, this output waveform can be used
in applications such as fractional- phase-locked loops, where
the instantaneous period and the duty cycle of the signal are less
important and the loop filter averages the output of the phase
detector (or charge pump). However, this waveform cannot be
easily used for frequency translation in mixers or in any applica-
tion that is sensitive to the instantaneous period (or frequency)
of the input signal. Hence, there is a need to develop frequency
dividers that can directly generate fractional division ratios.

Regenerative frequency dividers are another technique to
achieve fractional division ratios [5]. Fig. 1(a) shows a block
diagram of a regenerative frequency divider. The stability and
operation of regenerative frequency dividers are studied in
[5]–[8]. As shown in Fig. 1(a), a mixer, or a nonlinear network
in general, is used to create the mixing products of the input
and output frequencies. The tuned network in the forward path
passes the desired mixing product to the output. As shown in
[5], this divider can achieve the desired fractional division ratio.
However, regenerative frequency dividers have several limita-
tions: 1) They are usually not able to provide quadrature output
phases; 2) the sensitivity and output amplitude are degraded
when higher order mixing products are needed to achieve larger
than two, or fractional, division ratios [9]; 3) they often require
inductively tuned loads, which require a large die area; and 4)
the locking range is limited by the of the tuned load.

The block diagram of a frequency divider based on the het-
erodyne phase-locking technique [10] is shown in Fig. 1(b). This
technique can also be used to obtain a fractional division ratio.
However, it requires tuned loads for filtering the sum component
at the output of the mixer. In addition, the divider in Fig. 1(b) re-
quires more than one mixer to implement a fractional division
ratio. Increasing the number of mixers will increase the power
consumption and die area. At the same time, this frequency di-
vider cannot provide quadrature phases of the output, unless a
quadrature VCO, or a combination of a VCO at twice the desired
frequency and a divide-by-two, is used in the forward path. These
approaches require more area and power consumption. In addi-
tion, a quadrature VCO poses its own limitations on the am-
plitude and phase accuracy, as well as the achievable phase noise.

Another approach to implement a fractional division ratio is
to use multiple phases of the input clock and interpolate between
them using a sequential logic circuit [11]. However, the speed
of this technique is limited to lower frequencies, since it relies
on digital sequential circuits. Moreover, it can neither provide
quadrature output phases nor achieve a 50% duty cycle.
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Fig. 1. (a) Block diagram of a traditional regenerative frequency divider,
(b) general block diagram of a frequency divider based on heterodyne
phase-locking technique [10], and (c) generalized injection-locked regenerative
frequency divider.

In this paper, a different category of frequency dividers is ana-
lyzed, which can achieve both fractional division ratio and 50%
duty-cycle quadrature output phases. This class of frequency di-
viders is discussed in Section III, and its operation and stability
conditions are analyzed in Section IV.

III. INJECTION-LOCKED REGENERATIVE FREQUENCY DIVIDERS

A general block diagram of the injection-locked regenerative
frequency divider is shown in Fig. 1(c). This divider consists
of an injection-locked oscillator in the forward path, which is
followed by a frequency divider with division ratio , and a
frequency divider with division ratio in the feedback path.
The mixer in this divider functions as a frequency converter,
and the signal at the output of the mixer has a component at

. The mixer output can injection-lock the
oscillator if its amplitude is sufficiently large and its frequency

is within the locking range of the oscillator.
An SSB mixer can be used in this architecture to set the mixer

output to or if the quadrature phases
of both signals are available. This helps eliminate the inductor-
tuned load of the mixer, which eases the implementation of the
frequency divider in a digital CMOS technology and expands
the frequency-divider input range.

If the oscillator is injection-locked to the th harmonic of
its output frequency, i.e., , the output frequency

of the injection-locked regenerative frequency divider can be
expressed by

(1)

The in (1) depends on whether the difference or sum of
two frequencies is chosen at the SSB mixer output. Equation
(1) shows the possibility of obtaining fractional division ra-
tios using the injection-locked regenerative frequency divider
in Fig. 1(c). Similarly, if the oscillator is injection-locked to its

th subharmonic, i.e., , then

(2)

As can be seen from (1) and (2), injection-locked regenera-
tive frequency dividers can generate almost any arbitrary divi-
sion ratio. Moreover, as can be observed in Fig. 1(c), it can si-
multaneously provide multiple division ratios. Additionally, the
proper choice of the divide-by- block, e.g., a divide-by-two,
enables 50% duty-cycle quadrature outputs. An appropriate dis-
tribution of the integer part of the division ratio in (1), i.e.,
[or the ratio in (2)], may provide more options that can
also lead to 50% duty-cycle quadrature outputs. A design ex-
ample that achieves fractional division ratios, a 50% duty cycle,
and quadrature outputs is presented in Section VII.

Both (1) and (2) show the possibility of obtaining fractional
division ratios. However, for the rest of this paper, our focus
is on the case of superharmonic injection-locking the oscillator
to its th harmonic, i.e., , since this scenario has
more applications in the frequency divider arena; hence, we use
(1) as the input–output frequency relationship of the frequency
divider in Fig. 1.

Because of the similarities between the regenerative fre-
quency divider in Fig. 1(a) and the injection-locked regener-
ative frequency divider, the divider in Fig. 1(c) is sometimes
referred to as a modified regenerative divider [3]. However,
the divider in Fig. 1(c) is a separate category of frequency
divider, since it relies on an injection-locked oscillator for its
operation. To clarify this point, when there is no input signal to
a traditional regenerative frequency divider, it does not generate
any output. In fact, as discussed in [5], this is one of the stability
criteria of regenerative frequency dividers. However, in the
injection-locked regenerative frequency divider in Fig. 1(c), the
oscillator free-runs in the absence of an input.

IV. STABILITY ANALYSIS OF INJECTION-LOCKED

REGENERATIVE FREQUENCY DIVIDERS

To analyze the stability of the frequency divider in Fig. 1(c),
we assume that the oscillator in the forward path is injection-
locked to a frequency that is close to the th harmonic of its
self-resonance frequency (SRF) and an SSB mixer is used to
generate the difference (or sum) of and . In this
case, the relation between and is expressed by (1). In
addition, we assume that the input signal is applied to the LO
port of the SSB mixer. If we represent the input and output of
the injection-locked regenerative frequency divider by

and , respectively,
the differential mixer output can be expressed as

(3)
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Fig. 2. Two-stage CMOS ring oscillator. (a) Block diagram. (b) Negative-re-
sistance delay cell.

where is the transconductance of the Gm stage of the SSB
mixer and is the load impedance of the SSB mixer. In an
inductorless design approach, is a parallel combination of
the load resistor and the parasitic capacitances. Therefore, for
simplicity, both and can be considered constant within
the locking range of the oscillator. Moreover, for simplicity, we
assume that and do not contribute any phase shift.

The function in (3) models the nonlinearity of the LO
port of the mixer. If the input amplitude is sufficiently large,

can be approximated with a 1 square wave. Under this
assumption, if we substitute the Fourier series expansion of

into (3), the component of which
is at a frequency close to the SRF of the oscillator is

(4)

Other mixing products at the output of the SSB mixer, which
are caused by the nonlinearity of the LO port, are sufficiently
far from the SRF of the oscillator; hence, they cannot injection-
lock the oscillator. Linearizing the Gm stage of the mixer will
suppress the mixing products caused by the nonlinearity of its
transconductance . As a result, only the term shown in
(4) plays a role in injection-locking the oscillator and the other
terms are ignored.

Clearly, the minimum input sensitivity of the frequency di-
vider occurs when the output frequency is , which cor-
responds to , where is the SRF
of the oscillator. If the amplitude of the signal at the mixer output

is adequate to injection-lock the oscillator to

, the oscillator and the frequency divider will operate
in the stable region. If the amplitude is not adequate, the oscil-
lator is pulled and will generate sidebands [12]. As a result, the
stable region of operation of the injection-locked regenerative
frequency divider is determined by the locking range of the os-
cillator.

In order to superharmonic injection-lock an oscillator to one
of the oscillator’s even harmonics, the injection signal must
be applied to a common-mode node [13]. For instance, in the
two-stage ring oscillator in Fig. 2(a), which can be implemented
using the negative-resistance delay cell in Fig. 2(b), the injection
current signal must be applied to the source terminals of tran-
sistors and . In order to do that, a common choice is
to apply to the gate of the tail current source of one of
the delay cells in the ring oscillator. If is applied to the
gate of transistor in Fig. 2(b), the component of injection
current at frequency that reaches
the oscillator output can be found using an approach similar to
[13], i.e.,

(5)

where

(6)

and is the transconductance of in Fig. 2(b). The
expressed in (5) injection-locks the oscillator to fre-

quency . The magnitude of this injection
current in terms of can be expressed as

(7)
These expressions are valid for differential oscillators where

the injection signal is applied to the gate of the tail current
source.

It is clear that the stable region of operation of an injec-
tion-locked regenerative frequency divider depends on the re-
lationship between the locking range of the oscillator and the
amplitude of the injection signal. This relationship is derived
for oscillators in [12] and [14] and for ring oscillators with
more than three stages in [15]–[17]. The locking range of a two-
stage ring oscillator is of interest, since it requires the fewest
number of delay cells to generate quadrature output phases.
Consequently, it can achieve smaller die area and lower power
consumption. Therefore, the free-running and injection-locked
behavior of this oscillator will be studied in Section V, and its
locking range for different injection-locking scenarios will be
derived.

V. INJECTION-LOCKED TWO-STAGE RING OSCILLATOR

In the previous section, we showed how injection at the gate
of generates a differential injection current at the output of
the oscillator, as shown in Fig. 3. Writing the KCL at the drains
of and of the first delay cell results in

(8)
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Fig. 3. Schematic of the two-stage CMOS ring oscillator when an external
signal is injected at the output of the first delay cell.

In (8), is the differential injection current and is de-
fined by , and and are the equivalent
output resistance and capacitance at the output of the delay cell.
A similar differential equation is obtained for the second delay
cell, without the injection current, as follows:

(9)

where , , , and are the drain currents
of the second delay cell.

In the steady state, and can be expressed
using Fourier series representation, i.e.,

(10a)

(10b)

where

(11a)

(11b)

In order to have a real solution for oscillator voltages,
and must be complex conjugates

( ).
If the values of and are sufficiently large,

the transistors of each delay cell are fully switched and the
current waveforms of and
are similar to a 1 square wave. In this case, as shown in
Appendix A, when the oscillator is injection-locked to ,
i.e., , the magnitude and phase of the fundamental
harmonic of can be expressed by

(12)

A similar equation can be obtained for the second delay cell
as follows:

(13)

To further simplify our analysis, we define and as fol-
lows:

(14a)

(14b)

By separating the real and imaginary parts of (12) and (13),
we obtain

(15a)

(15b)

These nonlinear differential equations are very similar to
those from [15] for ring oscillators with more than three
stages. Equations (12) and (13) are used to calculate
and . If we represent the amplitudes of the fundamental
harmonics of the first and second stages by and , i.e.,

and ; thus

(16a)

(16b)

We use (15a) and (15b) to analyze the free-running and injec-
tion-locking behavior of the two-stage ring oscillator in Fig. 3.

A. Free-Running Oscillation

In steady state and in the absence of an external signal, i.e.,
, the ring oscillator oscillates at its SRF. In this case

(17)

After substituting into (15a) and combining it with
(15b) and (17), and from Appendix B, it is concluded that, in
steady state

(18)

The SRF is obtained by substituting into (15a)
or (15b) and then

(19)

and hence, the steady-state solution for and can
be written as

(20a)

(20b)

From (16a), (16b), and (18), the steady-state amplitudes of
the fundamental harmonics of the output voltages are

(21)

B. Two-Stage Ring Oscillator Under Single-Node Injection

Assuming that an external signal is injected at the output of
the first delay cell of the two-stage ring oscillator, as shown
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in Fig. 3, and that it has injection-locked the oscillator to its
frequency , in this case

(22)

We can use (22), (15a), and (15b) to find the steady-state
solution for and . In addition, from (15a), (15b), and
(22), the oscillation frequency under injection-locking can be
expressed as

(23)

It is important to note that the oscillation frequency for this
scenario is a function of . Substituting the from (19)
into (23) results in

(24)

The corresponding phase shift for any given injection
frequency can be found from (24). Equation (24) can be
rewritten as

(25)

where and are

(26a)

(26b)

The solution for (25) can be expressed as

(27)

Equation (27) determines the phase difference between the
fundamental component of the output voltages ( and

). As can be seen from (27), injection-locking a two-stage
ring oscillator to any frequency other than its SRF (using this
scheme of injection-locking) results in nonquadrature funda-
mental harmonics of the outputs. As an example, a two-stage
ring oscillator based on the delay cell in Fig. 2(b) is designed in
a 0.13- CMOS technology using a 1.2-V supply and is used
to verify this conclusion through simulation. In this oscillator,

, , , and the SRF is
approximately 4 GHz. The calculated output phase difference
for a prototype two-stage ring oscillator is shown in Fig. 4 and
compared with the circuit simulation, and the calculation error
is less than over the entire locking range.

We now calculate the required minimum amplitude and phase
of the external signal to injection-lock the oscillator to .
From (15a), (15b), and (22), it can be concluded that

(28)

Equation (28) can be simplified to

(29)

Fig. 4. Circuit-simulated and calculated, using (27), phase differences at the
output of a two-stage ring oscillator when an external signal is injected to the
output of the first delay cell � � � ���.

Using (29), one can find as a function of and injection
current as follows:

(30)

where

(31)

The smallest required amplitude of injection current to injec-
tion-lock the oscillator at is obtained from (30)

(32)

Therefore, by substituting from (27) into (32), one can
find a lower bound for to injection-lock the oscillator to .
Last, the solution for is found by substituting the lower bound
for into (30).

Repeating this procedure for different values of results
in the input sensitivity curve ( versus ) of the two-stage
ring oscillator.

Using this procedure, the calculated locking range of the two-
stage ring oscillator is obtained and shown in Fig. 5 and is com-
pared with circuit simulations. It can be seen from Fig. 5 that the
error in predicting the minimum injection current at the bound-
aries of the locking range is less than 6%.

It can be concluded from (16a) and (16b) that, in the pres-
ence of any external signal, even if it is at the same frequency
as SRF, the amplitudes of the oscillation voltages are not equal.
Fig. 6(a) shows the calculated and simulated amplitudes of the
output voltages as a function of injection frequency, assuming
that the minimum required injection current, from (32), is in-
jected at the output of the first delay cell. As can be observed in
Fig. 6(a), the output voltages have equal amplitudes at the SRF.
The calculated and simulated amplitude differences versus in-
jection frequency are shown in Fig. 6(b).

Fig. 7(a) shows a graphical representation of the steady-state
solution for the oscillation phases of the oscillator in Fig. 3 when
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Fig. 5. Calculated, using (32), and circuit-simulated locking ranges of a two-
stage ring oscillator when an external signal is injected to the output of the first
delay cell.

Fig. 6. Amplitudes of oscillation versus injection frequency. (a) Calculated,
using (16a) and (16b), and circuit-simulated amplitudes of output voltages and
(b) calculated and circuit-simulated amplitude differences when the external
signal is injected only at the output of the first delay cell and the minimum
required injection current is applied, i.e., � � � ���.

it free-runs. In this representation, and are the corre-
sponding phasors for the and current sources of the first
delay cell, shown in Fig. 2(b), and and are the corre-
sponding current phasors of the second delay cell. The resul-

Fig. 7. Graphical representation of steady-state solution for the voltage and
current phasors of the two-stage ring oscillator that is (a) free-running, (b) in-
jection-locked to a frequency lower than its SRF, and (c) injection-locked to a
frequency greater than its SRF. An external signal is injected at the output of
the first delay cell.

tant currents of the delay cells are denoted by and .
As can be seen in Fig. 7(a), when the two-stage ring oscillator
free-runs, or locks to its SRF, the two oscillation phases are or-
thogonal. In this case, the angle between the phasors of the re-
sultant current and the corresponding voltage of each stage is

.
Fig. 7(b) shows the same currents and voltages when the

oscillator of Fig. 3 is injection-locked to a frequency lower than
its SRF. In this case, the phase difference between oscillation
phases is less than . It can be shown that—in this
case—the angle between the phasors of the resultant current
and the voltage of each delay cell ( in the first delay cell
and in the second one) is less than . Similarly, Fig. 7(c)
shows the voltage and current phasors when the oscillator is
injection-locked to a frequency greater than its SRF. In this
case, is greater than . Similarly, it can be shown that, in
this case, and are greater than .

The nonquadrature output phases obtained for this scheme
of injection-locking when the oscillator is injection-locked to
frequencies other than its self-resonance frequencies makes this
scheme of injection-locking less attractive for applications with
demanding quadrature accuracy. In Section V-C, this oscillator
is analyzed when the external signal is injected at the outputs of
both delay cells.

C. Two-Stage Ring Oscillator Multinode Injection

In this section, we investigate the two-stage ring oscillator
when the external signal is injected to both of its delay cells,
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Fig. 8. Two-stage ring oscillator when the external signal is injected at the out-
puts of both delay cells.

as shown in Fig. 8. There are several reasons for injecting the
external signal at multiple nodes instead of a single node.

1) It provides balanced loading for the previous stage in dif-
ferential circuits.

2) It may increase the locking range of the oscillator under
injection, as shown in [15] and [16].

3) In this problem, it may help to maintain quadrature phases
and equal amplitudes for the fundamental

harmonics of output voltages in the entire locking range.

In this section, we propose a technique to maintain
for the entire locking range of the oscillator.

Using similar assumptions and procedures that were used to
derive (12) and (13), the following set of differential equations
are derived for the amplitudes and phases of the oscillator when
external signals are injected to the outputs of both delay cells
(Fig. 8)

(33a)

(33b)

Separating the real and imaginary parts of (33a) and (33b)
will result in differential equations that relate the amplitudes and
phases of the fundamental harmonic of the output voltages to
the amplitudes and phases of the injection signals. One can use
(14a) and the following definitions to simplify the results:

(34a)

(34b)

resulting in

(35a)

(35b)

In addition, the steady-state amplitudes of the fundamental
harmonics of the output voltages are obtained from (33a) and
(33b)

(36a)

(36b)

To complete the analysis, we also assume that the external
signals that are used to injection-lock the oscillator have equal
amplitudes, i.e., . From (22), (35a), and
(35b), it is concluded that, in steady state, the following relation
between , , , and holds:

(37)

We need to find a solution for (37) that satisfies
for every value of , , and . By substituting
into (37), we obtain the following:

(38)

By inspection, we can see that satisfies (38) for all
the values of . If we define as , it can be
shown that, to have quadrature output phases in the oscillator in
Fig. 8, the following condition needs to be true:

(39)

To provide quadrature inputs for this scheme of injection-
locking, one can use a polyphase filter or supply these phases
using another ring oscillator. However, when the ring oscillator
in Fig. 8 is used as a divide-by-two frequency divider, the ex-
ternal signal is applied to the gate of the tail current source

of the delay cell shown in Fig. 2(b). Since this signal
is at a frequency twice the , the external signals applied
to the gate terminals of the tail current sources in delay cells
need to be 180 out of phase to satisfy (39). This simplifies the
problem of providing the oscillator under locking with the ap-
propriate phases of external signal. Moreover, in this case, the
oscillator/frequency divider can provide balanced loading for its
preceding differential stage. It is particularly of practical interest
in injection-locked regenerative frequency dividers where the
oscillator is driven by a differential SSB mixer.

By substituting the solution to (38), i.e., , into
(37), one can find an expression for the oscillation frequency
under injection-locking in terms of the circuit parameters and
the amplitudes and phases of the external signals

(40)
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where

(41a)

(41b)

A comparison with the case where the external signal is only
injected to the first delay cell reveals that the oscillation fre-
quency of the multinode injection case is modulated by the angle
between the injection current and the oscillation voltage , as
shown in (40), while modulates the oscillation frequency in
the single-injection case, as shown in (24).

If is in the locking range of the oscillator, can be de-
termined by

(42)

The minimum required injection current to injection-lock the
two-stage ring oscillator to is obtained from (42) and (19)

(43)

Using (43), one can obtain the locking range of the two-stage
ring oscillator when an injection current is injected to both delay
cells. The calculated and simulated locking ranges of the two-
stage ring oscillator are shown in Fig. 9.

As can be seen from this figure, the calculation and simula-
tions match within the locking range. They deviate at the high
end of the locking range, and the maximum error at 6.2 GHz is
approximately 20%, due to additional parasitic components that
are not included in the model of the injection-locked frequency
divider (ILFD).

This simulated locking range is compared with the simulated
locking range from Section V-B where the external signal was
only applied to the first delay cell. The result versus the nor-
malized injection current amplitude is shown in Fig. 10. It is
observed from this plot that applying the external signal to both
the delay cells, with appropriate phase sequences and equal am-
plitudes, leads to a wider locking range and hence improves
the sensitivity of the injection-locked oscillator. This result is
in agreement with what was obtained in [15] and [16] for ring
oscillators with more than three stages.

An output phase difference of between funda-
mental harmonics of the output voltages is expected for this
scheme of injection-locking, and the circuit simulations agree
with that.

Note that, under these assumptions, the amplitudes of the
output voltages remain equal for all the values of injection fre-
quency within the locking range of the oscillator and are ex-
pressed by

(44)

The calculated and simulated amplitudes of the fundamental
component of the output voltages are shown in Fig. 11. It is
expected from (44) that, for this scheme of injection-locking,

Fig. 9. Calculated, using (43), and circuit-simulated locking ranges of a two-
stage ring oscillator when external signals are injected at the outputs of both
delay cells.

Fig. 10. Circuit-simulated locking range of a two-stage ring oscillator, � �

� ��� for different injection-locking schemes.

Fig. 11. Calculated, using (44), and circuit-simulated amplitudes of output
voltages versus injection frequency.

the amplitudes of the output voltages remain equal within the
locking range of the two-stage ring oscillator, and this is con-
firmed in circuit simulations.
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Fig. 12. Graphical representation of steady-state solution for the voltage and
current phasors of the two-stage ring oscillator when external signals are in-
jected to both delay cells with equal amplitudes and quadrature phases.

Fig. 12 shows a graphical representation of the steady-state
solution for the phasors of the voltages and currents of the os-
cillator in Fig. 8 when external signals are injected to both delay
cells. It can be seen that, under the constraints derived for ex-
ternal signals ( and ), the oscillation
voltages remain in quadrature with equal amplitudes. Similar to
Fig. 7(a), and are the corresponding phasors for the
and current sources [Fig. 2(a)] of the first delay cell, and

are the corresponding current phasors to the second delay
cell, and and are the resultant currents of the first and
second delay cells, respectively.

Circuit simulations across the locking range show that a 20%
input amplitude mismatch leads to quadrature amplitude and
phase mismatches of 0.4 dB and 2 at the output of the ring
oscillator in Fig. 8. In this case, the amplitudes of the injection
currents injected to the outputs of the delay cells in Fig. 8 are 605
and 495 . On the other hand, an input phase mismatch of
leads to output amplitude and phase mismatches of 0.4 dB and
0.5 , respectively. The injection-locked oscillator draws 4 mA
from a 1.2-V supply across the locking range. It can be shown
that if the input amplitude mismatch is negligible, an input phase
mismatch of causes an output phase mismatch of

(45)

where and are the bias currents of the negative-resistance
delay cell in Fig. 2(b). In the derivation of (45), it is assumed
that .

VI. PHASE-NOISE ANALYSIS OF INJECTION-LOCKED

REGENERATIVE DIVIDER

To analyze the output phase noise of the injection-locked re-
generative frequency divider, we use the simplified block dia-
gram of this divider with the main phase-noise sources shown
in Fig. 13. It is assumed that the oscillator’s internal phase noise
and the phase noise of the input frequency to the divider are the
main contributors to the output phase noise.

To start the analysis, we assume that steady state is reached
and the oscillator is superharmonic injection-locked to the th
harmonic of its output frequency.

Fig. 13. Phase-noise mechanism in an injection-locked regenerative frequency
divider.

It is shown in [18] that a superharmonic injection-locked os-
cillator to the th harmonic of its output frequency behaves like
a first-order phase-locked loop with an input-phase-to-output-
phase transfer function of , where

and, as shown in [1], for the injection-locked oscillator
in Fig. 8 is approximately

(46)

Consequently, the phase noise at the output of the injection-
locked oscillator can be expressed in terms of the
oscillator’s intrinsic noise and the phase noise of
the injection signal

(47)

As can be seen from (47), the phase noise at the output of
the oscillator consists of two components: the oscillator’s in-
trinsic phase noise, which goes through a first-order high-pass
transfer function, and the phase noise of the injection signal,
which encounters a first-order low-pass transfer function. Con-
sequently, the close-in phase noise of the injection-locked os-
cillator is dominated by the phase noise of the injection signal,
while the high-frequency phase noise follows the internal phase
noise of the free-running oscillator. Therefore, can
be approximated for close-in phase and high-fre-
quency phase noise by

.
(48)

As discussed in [19], if the SSB phase noise of the inputs to
the mixer of Fig. 1(c) are and and if the amplitude
of the signal at the mixer output is sufficiently large, the output
phase noise of the mixer is mainly dominated by the phase noise
of the inputs and can be written as

(49)

Since the divide-by- is locked to the oscillator output,
we can assume that its output phase noise is dominated
by the phase noise of the injection-locked oscillator, i.e.,
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. As a result, the phase noise of
the feedback signal (the output of the divide-by- ) is

(50)

Substituting (49) and (50) into (48), the output phase noise
of the injection-locked regenerative divider �

can be expressed as

�

.
(51)

It can be concluded from (47) that if the injection signal is
noiseless, the phase noise at the output of the frequency divider
would be equal to the attenuated extrinsic phase noise of the
oscillator [15], [18]; in other words

� (52)

To complete this section, we investigate the phase noise of the
two-stage ring oscillator in Fig. 2(a). The free-running phase
noise of a two-stage ring-oscillator-based VCO that uses neg-
ative-resistance delay cells with active loads is calculated in
[20] using the impulse sensitivity function technique of [21] and
[22]. Here, we use the result obtained in [20] to find the phase
noise of the two-stage ring oscillator in Fig. 2. In this case, the
free-running phase noise at the offset from the carrier (in
dBc/Hz) can be expressed as

� (53)

where is the output referred mean square current noise
density which contains both thermal and flicker noises and can
be expressed by .
In this expression, is the load resistor used in the delay cell
in Fig. 2(b) since it is the only noisy component of the output
resistance at the output of each delay cell. Using the oscillation
frequency given by (19), the phase noise (53) can be rewritten
as

� (54)

The simulated and calculated free-running phase noise of the
prototype two-stage ring oscillator from Section V-B is shown
in Fig. 14(a). To precisely calculate the phase noise, is
measured using circuit simulation and then substituted into (54).
The simulated injection-locked phase noise of this two-stage
ring oscillator for different amplitudes of the injection signal is
shown in Fig. 14(b). To obtain these plots, this two-stage ring
oscillator is used as a divide-by-two, and noiseless differential
injection signals are applied to the gates of transistors labeled
by [Fig. 2(b)] in each delay cell. As was discussed before,
the output phase noise of the oscillator is its attenuated internal
noise, and this noise is more attenuated for larger amplitudes of
injection signals.

Fig. 14. Phase noise of the prototype two-stage ring oscillator. (a) Calculated
phase noise from (54) versus circuit simulation of free-running phase noise and
(b) circuit-simulated phase noise when injection-locked to a noiseless injection
signal for different values of injection signals (an external signal is injected to
both delay cells).

Using (51), (54), and the phase noise of the injection signal,
one can calculate the output phase noise of the injection-locked
regenerative frequency divider.

VII. DESIGN EXAMPLE OF A DIVIDE-BY-2.25/4.5

As mentioned earlier, one of the benefits of the injection-
locked regenerative frequency divider is its ability to obtain frac-
tional division ratios while providing 50% duty-cycle quadra-
ture output phases. In this section, we present a design example
of an injection-locked regenerative frequency divider that gen-
erates a fractional division ratio.

One of the design goals is to achieve a design suitable for
implementation in a digital CMOS submicrometer technology
using no on-chip inductor. This goal implies using ring oscilla-
tors with resistive loads and also exploiting SSB mixers in the
injection-locked regenerative frequency divider. The latter re-
quires the availability of the quadrature phases of both the input
to the frequency divider and its output or, more precisely, the
output of the feedback path.

There are several ways to provide the quadrature phases
of input, such as using polyphase filters or preceding the di-
vide-by-2.25 by another frequency divider or a ring oscillator
that can generate quadrature output phases. As previously
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Fig. 15. Simplified schematic of a divide-by-2.25/4.5 with quadrature outputs
and 50% duty cycle using an injection-locked regenerative frequency divider
architecture. An SSB mixer based on Gilbert cell mixer with resistive load is
used. Dummy loads at the output of frequency dividers are not shown.

stated, a block with quadrature outputs in the forward path is
required to generate quadrature output phases. A divide-by-two
flip-flop is usually a good candidate for this purpose, since most
divide-by-two circuits can provide quadrature output phases.
On the other hand, any oscillator that is injection-locked to its
second harmonic can be used as a divide-by-two. Two-stage,
or four-stage, ring oscillators are good examples that serve as
divide-by-two circuits and provide quadrature outputs.

Fig. 15 shows a fractional frequency divider based on the
general architecture in Fig. 1(c). This frequency divider is pri-
marily designed to obtain a division ratio of 2.25 to be used for
frequency synthesis for multiband orthogonal frequency-divi-
sion multiplexing ultrawideband [1]. The ILFD in the forward
path of the frequency divider in Fig. 15 is implemented using
the two-stage ring oscillator with negative-resistance delay cells
shown in Fig. 2. In addition to operating with a smaller input
drive, an ILFD can operate at higher speeds in comparison to
static frequency dividers. The feedback path of the frequency
divider in Fig. 15 consists of a cascade of two flip-flop-based
CML divide-by-two circuits. Using divide-by-two blocks in the
feedback path provides quadrature phases for the operation of
the SSB mixer.

From (1), it can be concluded that, in the steady state,
and . Therefore, the frequency divider

in Fig. 15 achieves division ratios of both 2.25 and 4.5. In con-
trast to the previous approaches [3], no on-chip inductor is re-
quired to implement this frequency divider.

As mentioned in Section V-C, when appropriate injection sig-
nals are applied to both the delay cells of the ring oscillator
in Fig. 2, there is no systematic quadrature mismatch at the
output. Monte Carlo simulation using the extracted layout of
the frequency divider was performed to investigate the quadra-
ture output mismatches induced by process variations, device
mismatches, and layout imperfections. The simulation results
showed a standard deviation of 0.3 dB for quadrature ampli-
tude mismatch and a standard deviation of 1.4 for quadrature
phase error across the locking range. These amplitude and phase
mismatches are tolerable for most applications. The frequency
divider in Fig. 15 and its output buffers (not shown in Fig. 15)
draw 14 mA from a 1.2-V supply.

Fig. 16. Block diagrams of the injection-locked regenerative frequency di-
viders with quadrature outputs and 50% duty cycle (a) with a fractional division
ratio (2.25 and 4.5) and (b) with integer division ratio (divide-by-three).

The frequency divider in Fig. 15 is similar to the di-
vide-by-4.5 presented in [23] where the forward path consists
of a cascade of two divide-by-two and the feedback path is
implemented using a divide-by-two. The first divide-by-two in
the forward path is a CML divider, and the other two frequency
dividers are implemented using true single-phase clocked logic
[24] to reduce the power dissipation. The SSB mixer in [23]
uses an inductive load to suppress unwanted mixing products.
The frequency divider of [23] does not use any linearization
technique or harmonics polyphase filtering used in the fre-
quency divider in Fig. 15.

The input signal to the frequency divider can be applied to
either the RF port (Gm stage) or the LO port of the SSB mixer.
When it is connected to the RF port, as shown in Fig. 16(a), the
divider achieves a better input sensitivity; thus, it can function
with smaller input power. On the other hand, the output of the
feedback path frequency divider is fed to the LO port. The large
swing of the CML divider output is suitable for the saturation
operation of the LO port of the mixer. However, in this case, all
the odd harmonics of the feedback signal contribute to in-band
mixing products at the mixer output since the feedback signal
is at a lower frequency than the input signal. Consequently, the
signal at the output of the mixer can achieve a non-50% duty
cycle which leads to the phase inaccuracy at the final output
of the main frequency divider. Moreover, as shown in [25], any
frequency spur at the input of a divide-by-two translates to a
spur at the output of the divider at the same offset frequency.

To solve these issues, one can use the scheme shown in
Fig. 16(b) in which the input signal, which is at a greater
frequency than the feedback signal, is applied to the LO port of
the SSB mixer. In this scheme, the feedback signal is applied
to the RF port (Gm stage) of the mixer. The contribution of
the feedback signal to higher order in-band mixing products
can be minimized by linearizing the Gm stage of the mixer.
In addition, the feedback signal, which is rich in harmonics,
can go through harmonic suppression filtering. In the presence
of the quadrature phases of the feedback signal, a polyphase
filter can be used since, first, it provides balanced loading for
all the outputs of the feedback frequency divider, second, it can
achieve better harmonic suppression by generating imaginary
zeros, and third, it does not require any on-chip inductor or
balun. The drawback of the scheme shown in Fig. 16(b) is the
degraded input sensitivity of the resultant frequency divider.

In this scheme, if the input signal is smaller than required
for the saturation operation of the mixer LO port, the amplitude
of the mixer output signal depends on the input amplitude and,
hence, could be small. As previously stated, using an ILFD in
the forward path of the divide-by-2.25 has the advantage that it
can operate with smaller input drive. As a result, it can guarantee
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Fig. 17. Circuit-simulated locking range of the prototype divide-by-2.25/4.5
and comparison with the locking range of the oscillator used in it.

the robust operation of the injection-locked regenerative divider
in Fig. 15.

As was discussed in Section IV, the choice of this ILFD,
or generally, the forward path oscillator, is directly tied to the
stability of the injection-locked regenerative divider. Nonethe-
less, using an ILFD mandates careful analysis and simulations
to make sure that it has a wide-enough locking range to com-
pensate for process variations. A ring-oscillator-based ILFD has
wider locking range compared with the oscillator. In addi-
tion, it can provide multiple phases of output, occupies smaller
area on silicon, and is more compatible with the digital CMOS
technology.

As was shown in Section IV, the locking range of the injec-
tion-locked regenerative divider follows the locking range of
its oscillator. The input to the RF port of the mixer (Fig. 15)
is set by the output of its preceding frequency divider. There-
fore, in order to control the amplitude of , the amplitude
of the input to the LO port of the mixer is varied. The simu-
lated locking range of this divider is shown in Fig. 17 and is
compared with the locking range of the two-stage negative-re-
sistance-based ring oscillator. As can be seen, the agreement is
very good throughout the locking range, and the maximum error
in predicting the injection voltage is about 30 mV at the low end
of the locking range.

Fig. 18 shows the simulated free-running and locked phase
noise of the frequency divider for an output frequency of 4 GHz
when a noiseless input signal is input to the divider. The am-
plitude of the injection signal is changed by changing the am-
plitude of the input to the LO port of the mixer. From (52), we
expect to obtain a similar output phase noise to those in Fig. 14,
and comparing Fig. 18 and 14 shows a very good agreement
within 2 dB.

VIII. CONCLUSION

This paper has presented an analysis of the operation,
stability, locking range, and phase noise of injection-locked re-
generative frequency dividers. In addition, the injection-locked
behavior of two-stage ring oscillators (based on negative-resis-
tance delay cells) is studied, and their locking range is derived
for the first time. Finally, a design technique was presented
for implementing a regenerative frequency divider in a dig-
ital CMOS technology (using no on-chip inductor or balun)

Fig. 18. Circuit simulation of free-running and injection-locked phase noise of
the prototype divide-by-2.25/4.5 for different LO amplitudes.

for achieving fractional division ratios with 50% duty-cycle
quadrature output phases. The circuit simulation results of the
designed oscillator and the fractional injection-locked regen-
erative frequency divider are in excellent agreement with the
calculations.

APPENDIX A
DERIVATION OF VOLTAGE AND PHASE RELATIONSHIPS IN AN

INJECTION-LOCKED TWO-STAGE RING OSCILLATOR

If the values of and are sufficiently large,
the transistors of each delay cell in Fig. 2(a) are fully switched
and the current waveforms of and

are similar to a 1 square wave. These waveforms are in
phase with the fundamental component of their controlling volt-
ages [15], i.e., in the first delay cell is in phase
with the fundamental harmonic of and

is in phase with the fundamental harmonic of ;
thus, they can be represented using a Fourier series as follows:

(55a)

(55b)

The factor in the argument of the instantaneous phase of
in (55a) comes from its controlling voltage,

which is the fundamental harmonic of . To represent
a real current, and must be complex conju-
gates ( ). As shown in [26], under the stated assump-
tions, and are and , respectively. We also
assume that the differential injection current can be represented
by , where . By substituting
(10a), (10b), (55a), and (55b) into (8) and considering the stabi-
lized amplitude of oscillation under steady state, the following
was achieved:
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(56)

When the oscillator is injection-locked, . Equating
the coefficients of similar exponents in (56) results in the fol-
lowing where is the Kronecker delta and equals one
for the fundamental harmonic of output voltages ( ) and
is zero for other harmonics:

(57)

The harmonics of the currents of (55a) and (55b) have a
roll-off of approximately . Moreover, these har-
monics go through the low-pass filter of the output load of each
delay cell. As a result, the fundamental harmonic is dominant.

Substituting into (57) results in a differential equation
for the fundamental harmonic of

(58)

After substituting the values of and into (58), it can
be rewritten as

(59)

A similar equation can be obtained for the second delay cell

(60)

APPENDIX B
STABILITY ANALYSIS OF THE OSCILLATION PHASES

OF THE TWO-STAGE RING OSCILLATOR

Equation (18) states that when the two-stage ring oscillator
in Fig. 3 is free-running , the outputs have a phase
difference of . In this section, we use perturbation
analysis, a similar approach to that of [15], to investigate the
stability of these solutions for . We first start with

. For this case, and can be expressed as

(61a)

(61b)

where and are perturbations added to and , re-
spectively. Substituting (61a) and (61b) into (15a) and (15b) re-
sults in

(62a)

(62b)

If we define as and also considering that
and are very small compared with and , we can

derive a differential equation for using (62a) and (62b),
as shown in the following:

(63)

where

(64)

The solution to (63) is

(65)

As can be seen from (65), any perturbation on the phase dif-
ference will eventually diminish. A similar analysis can be done
for and . From (62a), (62b), and (65), the solution
for and can be expressed as follows:

(66a)

(66b)

Using (66a) and (66b), it can be shown that
and .
A similar analysis for results in

(67)

which shows that, in this case, any perturbation sustains and
grows with time. A similar analysis can be performed to check
the stability of the solutions for oscillation phases in the pres-
ence of an external signal .
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